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Process systems engineer supporting R&D

• Expertise:
• Detailed process modeling, techno-economic assessment, and mathematical optimization

• Emerging water treatment and desalination technologies

• Education background:
• Ph.D. Civil and Environmental Engineering from Carnegie Mellon University

• B.S. Chemical Engineering from Washington University in St. Louis

• Employment background:
• National Energy Technology Laboratory (NETL), led development of a National Alliance 

for Water Innovation (NAWI) funded open-source software tool called WaterTAP

• Horizon Modeling Solutions, cofounded a consulting company for supporting R&D
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A paradigm shift for water management requires advances 
in treatment technologies
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Circular water economy is currently perceived as non-viable because of 

the insufficient performance or high cost of treatment technologies
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Circular water economy is currently perceived as non-viable because of 

the insufficient performance or high cost of treatment technologies

Technical challenge: Rapid designing, piloting, and commissioning of 
innovations that reduce the failure rate and cost of treatment



TEAs estimate performance and financial metrics
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Performance metrics:

• Production or recovery

• Efficiency

• Energy and material consumption

• Waste generation

Financial metrics:

• Specific operating cost

• Specific capital cost

• Levelized cost of product or waste

• Net present value 

• Internal rate of return
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There is a wide range of value and detail in TEAs
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“All models are wrong, but some are useful”
- George Box, British Statistician 1919-2013
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“All models are wrong, but some are useful”
- George Box, British Statistician 1919-2013

Analyses with the lowest detail
• Provide value by identifying promising opportunities
• Limited insight into what is possible or how to get there
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“All models are wrong, but some are useful”
- George Box, British Statistician 1919-2013

Analyses for established technologies
• Primarily use simple models backed by validated data
• Focused on execution and operations, rather than improved design
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“All models are wrong, but some are useful”
- George Box, British Statistician 1919-2013

Analyses for new technologies
• Provide value by projecting costs from performance assumptions
• Limited insight into best applications or best design/operations
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“All models are wrong, but some are useful”
- George Box, British Statistician 1919-2013

Detailed analyses for new technologies
• Identify most promising applications, best design and operation for 

different scenarios, pinpoint technical and financial bottlenecks
• Support in bench and pilot design, operation, and evaluation



Conducting a TEA for new technologies can be challenging

Time and skill intensive steps:

1. Scope out relevant system to cover 
technology benefits and costs

2. Implement or develop predictive models 
linking decision variables to performance 
and cost

3. Obtain process and financial parameter 
values when data is typically limited

4. Determine design and operation without 
established heuristics

Two overall approaches:

1. Engineers in industry
• Cobble together available software tools 

and in-house spreadsheets 

• Inherent limitations for modeling new 
technologies and incompatibilities due to 
interfacing between tools

2. Researchers in academia
• Build models from scratch 

• TEAs have variable quality and can take 
several months to two years to complete
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Start guiding R&D with a cost model and process data

Cost models are required, but predictive process models are optional

• Use an assumed performance process model based on your data or understanding

• Vary the financial and performance parameters to set research goals and priorities
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Start guiding R&D with a cost model and process data

Cost models are required, but predictive process models are optional

• Use an assumed performance process model based on your data or understanding

• Vary the financial and performance parameters to set research goals and priorities

Cost model can combine engineering handbooks and online resources

• Use costing frameworks in chemical engineering handbooks (Towler & Sinnott, Seider et al.)

• Tables for generic equipment costs, factors for estimating indirect costs (engineering, siting, etc.)

• Update to today’s dollars with the chemical engineering plant cost index (CEPCI), blog description

• Curate online equipment cost quotes and establish a range and/or simple relationship 

• Leverage the Activate Technomics course: https://www.activate.org/techonomics 

• Educational videos, downloadable Excel models with costing framework and parameter ranges

• Developed by Chris Burk from Burk Techno-Economics with more resources at his site
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https://www.sciencedirect.com/book/9780080966595/chemical-engineering-design
https://www.wiley.com/en-us/Product+and+Process+Design+Principles%3A+Synthesis%2C+Analysis+and+Evaluation%2C+4th+Edition-p-9781119282631
https://toweringskills.com/financial-analysis/cost-indices/
https://www.activate.org/techonomics
https://www.burktechnoeconomics.com/know-how
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• Assumed process models can help set research goals and priorities
• But they lack insight into whether targets are realistic or how to reach them

https://www.sciencedirect.com/book/9780080966595/chemical-engineering-design
https://www.wiley.com/en-us/Product+and+Process+Design+Principles%3A+Synthesis%2C+Analysis+and+Evaluation%2C+4th+Edition-p-9781119282631
https://toweringskills.com/financial-analysis/cost-indices/
https://www.activate.org/techonomics
https://www.burktechnoeconomics.com/know-how


WaterTAP provides a platform for improving the quality and 
decreasing the effort of TEAs

Software release:

• Publicly accessible on GitHub

• Released every quarter

pip install watertap

https://github.com/watertap-org/watertap

https://watertap.readthedocs.io/en/latest/

Unified

Flexible

Powerful

• Open-source

• Multi-hierarchical

• Customizable

• Equation oriented

• IDAES compatible

𝑓 𝑥 = 0

Core attributes:

Modular model library:

Core capabilities:

• Simulation to evaluate new device integration

• Optimization to explore complex systems 

• Sensitivity analyses to consider uncertainty

• Parameter estimation to fit real-world data

• Data-driven models for complex phenomena
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$15M+ of funding

https://github.com/watertap-org/watertap
https://github.com/watertap-org/watertap
https://github.com/watertap-org/watertap
https://watertap.readthedocs.io/en/latest/
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WaterTAP was developed to provide a centralized platform that makes 
TEAs more transparent, reproducible, comparable, and extendable

$15M+ of funding

https://github.com/watertap-org/watertap
https://github.com/watertap-org/watertap
https://github.com/watertap-org/watertap
https://watertap.readthedocs.io/en/latest/


Mathematical optimization greatly expands TEAs
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Simulation based modeling focuses on 

decision variables
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Optimization based modeling focuses on 

parameters (model assumptions)
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Mathematical optimization greatly expands TEAs
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Simulation based modeling focuses on 

decision variables
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Detailed water chemistry is supported on WaterTAP
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• Modeling complex water chemistry is challenging and data intensive
• Numerous reactions and interactions across aqueous, vapor, and solid species

• Dependent on concentrations of all species (even very small values)
• pH, temperature, pressure can all be significant

• Electrolyte theoretical models can be built on the platform (e.g., eNRTL, 
MSE, Pitzer)

• Data availability limits the species than can be considered
• WaterTAP does not currently support a database for these models

• WaterTAP leverages external water chemistry software

PHREEQC

Water chemistry 

simulations

Surrogate approach

Pyomo surrogate

model

Pyomo grey

box model

Direct approach



Evaluating the potential of a conceptual process

Objective: Model a novel 
high recovery system using 
conventional technologies 

Ion
Conc. 

(mg/L)

Na 739

Cl 870

K 9

Ca 258

Mg 90

SO4 1011

HCO3 385

Sr 3

SiO2 25

TDS 3397

Description:

• 2 membrane and 1 evaporative process

• Constrained by mineral scaling

• Antiscalants, pH control, and softening for 
interstage percipitation

Approach

• Mechanistic model for desalination processes

• ML model for water chemistry from PHREEQC

• Hypothetical model for antiscalant efficacy
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Evaluating the potential of a conceptual process

Objective: Model a novel 
high recovery system using 
conventional technologies 

Surprising results:

• Costs are below $1/m3

• Recoveries up to 98% recovery

Other results:

• Mineral scaling dictates extent of recovery in 
each stage

• Higher salinity desalination technologies 
contribute a small amount to the cost

• Softening cost becomes dominant
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• Antiscalants, acid addition, and softening can likely achieve high recoveries
• Improvements in high concentration desal technologies has limited value



Exploring the potential of a novel membrane process
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Low salt rejection reverse osmosis (LSRRO)

Decision variables:

• Membrane area

• Operating pressure

• Salt permeability/passage

Highly interconnected system
1 2 3 4 5 6 7 8

Atia et al. Desalination. 2023, 551, 116407

https://doi.org/10.1016/j.desal.2023.116407
https://doi.org/10.1016/j.desal.2023.116407
https://doi.org/10.1016/j.desal.2023.116407


MVC

Quantifying technoeconomic viability through comparison
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Lowest cost technology
LSRRO

Case: 100 g/kg and 50% water recovery

Tucker et al. Water Research. 2024, 260, 121950

https://doi.org/10.1016/j.watres.2024.121950
https://doi.org/10.1016/j.watres.2024.121950
https://doi.org/10.1016/j.watres.2024.121950
https://doi.org/10.1016/j.watres.2024.121950


Using sensitivity analysis to prioritize development
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Case: 100 g/kg and 50% water recovery

Atia et al. Desalination. 2023, 551, 116407

https://doi.org/10.1016/j.desal.2023.116407
https://doi.org/10.1016/j.desal.2023.116407
https://doi.org/10.1016/j.desal.2023.116407


Identifying impactful and viable research targets

27

Case: 100 g/kg and 50% water recovery

       ase case

Atia et al. Desalination. 2023, 551, 116407

https://doi.org/10.1016/j.desal.2023.116407
https://doi.org/10.1016/j.desal.2023.116407
https://doi.org/10.1016/j.desal.2023.116407


Identifying impactful and viable research targets
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Case: 100 g/kg and 50% water recovery

       ase case

Atia et al. Desalination. 2023, 551, 116407

• LSRRO is a promising technology for feed salinities between 35-150 g/L TDS
• R&D should focus on increasing the maximum allowable pressure
• Mathematical optimization expands the analysis for the whole application space

https://doi.org/10.1016/j.desal.2023.116407
https://doi.org/10.1016/j.desal.2023.116407
https://doi.org/10.1016/j.desal.2023.116407


Projecting the implications of bench-scale data
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High pressure reverse osmosis (HPRO)

ERD

ERD

RO

RO

RO

Waste

ProductFeed
Polishing

Repeated

Prof. Eric Hoek

Two known challenges:

• Membrane compaction at high pressures decreases 
water permeability and increases salt permeability

• Equipment that operates at higher pressures are 
more expensive



Projecting the implications of bench-scale data
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Two known challenges:

• Membrane compaction at high pressures decreases 
water permeability and increases salt permeability

• Equipment that operates at higher pressures are 
more expensive

Wu et al. Desalination. 2022, 537, 115875

Wu et al. Desalination. 2022, 537, 115875

https://doi.org/10.1016/j.desal.2022.115875


Projecting the implications of bench-scale data
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Projecting the implications of bench-scale data
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Projecting the implications of bench-scale data
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Two known challenges:

• Membrane compaction at high pressures decreases 
water permeability and increases salt permeability

• Equipment that operates at higher pressures are 
more expensive

• HPRO is promising despite membrane compaction and higher component costs
• Modular models enable rapid assembly of different systems (LSRRO and HPRO)
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Distributed brackish water desalination in Kenya

(off grid and driven by solar power)

Pilot seeks to address two issues:

• Mineral scaling even with significant antiscalant 
dosing (at a high cost)

• High disposal volumes with only 50% water recovery 

Prof. Manish Kumar

Product
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Pilot
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Assisting pilot design and operation



Assisting pilot design and operation
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Before After

Benefits:

• Reduce brine production by 67.5%

• No use of antiscalants

Cons:

• Lime softening and waste sludge generation
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• Mineral scaling even with significant antiscalant 
dosing (at a high cost)

• High disposal volumes with only 50% water recovery 



Assisting pilot design and operation
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Before After

Benefits:

• Reduce brine production by 67.5%
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Cons:
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Distributed brackish water desalination in Kenya

(off grid and driven by solar power)
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Pilot seeks to address two issues:

• Mineral scaling even with significant antiscalant 
dosing (at a high cost)

• High disposal volumes with only 50% water recovery 

• Bench-scale testing is extended with detailed process-scale modeling
• Analysis identified a risk for pilot failure and suggested the fix



Evaluating a potential commercial-scale retrofit
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Prof. Mingheng Li

Large groundwater desalination plant

Chino Basin Desalter
Analysis seeks to evaluate a potential retrofit:

• Reduce disposal costs by increasing recovery

• Potentially add third stage RO with feed flow 
reversal to mitigate mineral scaling



Evaluating a potential commercial-scale retrofit

38

Normal operation 

(RO3 switch's flow direction)

Flushing of RO3 during flow switch, 

wastes part of feed

What impact does membrane life and flush volumes have on viability?

Prof. Mingheng Li

Large groundwater desalination plant

Chino Basin Desalter
Analysis seeks to evaluate a potential retrofit:

• Reduce disposal costs by increasing recovery

• Evaluate a third stage RO with feed flow reversal 
to mitigate mineral scaling



Evaluating a potential commercial-scale retrofit
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Normal operation 

(RO3 switch's flow direction)

Flushing of RO3 during flow switch, 

wastes part of feed

What impact does membrane life and flush volumes have on viability?

Prof. Mingheng Li

Large groundwater desalination plant

Chino Basin Desalter
Analysis seeks to evaluate a potential retrofit:

• Reduce disposal costs by increasing recovery

• Evaluate a third stage RO with feed flow reversal 
to mitigate mineral scaling

• Significant insight with varying two assumed performance parameters
• Suggests further investigation into membrane lifetime (not necessarily flushing)



WaterTAP has a broad water treatment library
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Membrane:

• Reverse osmosis

• Osmotically assisted reverse osmosis

• Nanofiltration

• Membrane distillation

Evaporative:

• Mechanical vapor compression

• Multi-effect distillation

• Crystallizer

Electrochemical:

• Electrodialysis

• Electrolyzer

• Electrocoagulation

Chemical:

• Stoichiometric and equilibrium reactors

Ad/absorption:

• Ion exchange

• Granular activated carbon

• Solvent extraction

Biological:

• Activated sludge

• Anaerobic digestor

Auxiliary equipment:

• pumps, heat exchangers, mixers, splitters



Process scale modeling provides value in TEAs

• Use process and cost models that:

• Link key design and operating variables to the 
performance and cost

• Represent the system, not just the technology

• Use mathematical optimization to handle the 
design and operating variables 

• Consider uncertainty through deterministic 
and stochastic sensitivity analyses 

• Incorporate real world data through:

• Parameter estimation with mechanistic 
models

• Hybrid models with data-driven surrogate 
models

41



TEA provides quantitative decision support for R&D

Predictive process modeling with optimization transforms TEAs:

• Evaluate full application space and identify most promising ones

• Determine best design and operation for a model and specified parameters

• Focus analysis on modeling assumptions and parameters, not decision variables

• Pinpoint technical and financial bottlenecks and determine priority for development

• If model predictions are shown to be inaccurate, they can be updated with implications 
assessed quickly

Process systems engineering and TEA can support bench and piloting efforts:

• Plan – support system design and experimental campaign to achieve objectives

• Operate – fault detection and attribution, suggest modifications

• Evaluate – project the implications of the data for commercial scale deployment

42
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A large team developed WaterTAP and conducted the presented analyses

• National Energy Technology Laboratory: Tim Bartholomew, Andrew Lee, Adam Atia, Chenyu Wang, Marcus 

Holly, Alejandro Garciadiego, Elmira Shamlou, Zhuoran Zhang 

• Lawrence Berkeley National Laboratory: Dan Gunter, Keith Beattie, Oluwamayowa Amusat, Ludovico 

Bianchi, Jennifer Stokes-Draught, Xiangyu Bi, Michael Pesce

• National Renewable Energy Laboratory: Ben Knueven, Ethan Young, Jared Allen, Jordan Macknick, Kurban 

Sitterley, Kinshuk Panda, Zach Binger, Mukta Hardikar, Paul Vecchiarelli

• Oak Ridge National Laboratory: Srikanth Allu, Austin Ladshaw, Johnson Dhanasekaran, Fahim Abdullah

• SLAC National Accelerator Laboratory: Alexander Dudchenko

• West Virgina University: Hunter Barber, Savannah Sakhai

• Stanford University: Carson Tucker, Akshay Rao

WaterTAP was funded by:

Disclaimer: Views expressed are the authors’ and do not necessarily re lect those o  the U. . Government. 

No endorsement implied.
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