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Process systems engineer supporting R&D

* Expertise:
« Detailed process modeling, techno-economic assessment, and mathematical optimization
« Emerging water treatment and desalination technologies

| Carnegie
« Education background: Mellon
» Ph.D. Civil and Environmental Engineering from Carnegie Mellon University University

* B.S. Chemical Engineering from Washington University in St. Louis
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University in St.Louis
 Employment background:

* National Energy Technology Laboratory (NETL), led development of a National Alliance
for Water Innovation (NAWI) funded open-source software tool called WaterTAP

« Horizon Modeling Solutions, cofounded a consulting company for supporting R&D
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A paradigm shift for water management requires advances
In treatment technologies

Linear water economy

Treatment —b Treatment

i7

Circular water economy

roducts

Treatment

Reuse, recycle, recover Disposal

Use

Circular water economy is currently perceived as non-viable because of
the insufficient performance or high cost of treatment technologies

Modveling Solutions



A paradigm shift for water management requires advances
in treatment technologies

Linear water economy

Treatment

Disposal
‘.

Technical challenge: Rapid designing, piloting, and commissioning of
innovations that reduce the failure rate and cost of treatment

Circular water economy is currently perceived as non-viable because of
the insufficient performance or high cost of treatment technologies
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TEAs estimate performance and financial metrics

Performance metrics:

Production or recovery
Efficiency
Energy and material consumption

Waste generation

Financial metrics:

Specific operating cost

Specific capital cost

Levelized cost of product or waste
Net present value

Internal rate of return

Modveling Solutions
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Compare metrics
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Metric

Quantify the effect of
a modeling parameter

Parameter Z




There is a wide range of value and detail in TEAs

“All models are wrong, but some are useful”
- George Box, British Statistician 1919-2013

Increasing detail

Process Assumed Simple Data driven .
Mechanistic
model performance conceptual surrogate
Cost Back of Simple direct : S_lmple with Detailed
model envelope indirect factors
Process Analogy Bench Small pilot Large pilot
data
Cost Analo Textbooks Expert Specific
data 9y Literature elicitation online quotes

Modveling Solutions

Hybrid
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Detailed
site-specific

Commercial

Complete
vendor quotes



There is a wide range of value and detail in TEAs

“All models are wrong, but some are useful”
- George Box, British Statistician 1919-2013

Increasing detail

Process ;, Assumed "\ Simple Data driven - Hybrid
. Mechanistic L.
model : performance : conceptual surrogate mechanistic
I |
| i : .
Cost : Back of | Simple direct | S_lmple with Detailed _Detallec_i.
model ; envelope : indirect factors site-specific
I I
|
Prg:teass : Analogy | Bench Small pilot Large pilot Commercial
|
: :
Cost I ' omplete
data ' @ - - uot
ata Analyses with the lowest detail uotes

7
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* Provide value by identifying promising opportunities
* Limited insight into what is possible or how to get there
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There is a wide range of value and detail in TEAs

“All models are wrong, but some are useful”
- George Box, British Statistician 1919-2013

Increasing detail

Process Assumed |’ Simple Data driven \| Mechanistic Hybrid

model performance '\ conceptual surrogate ;I mechanistic

r - - - - - T-TT-- =/ = ======== \
. . : .

Cost Back of Simple direct | S_lmple with | Detailed _Detallec_i. :

model envelope indirect factors | site-specific
(- - - - - === N\
Prg:teass Analogy Bench Small pilot Large pilot : Commercial

Cost
Ana : :
data Analyses for established technologies

*  Primarily use simple models backed by validated data
* Focused on execution and operations, rather than improved design
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There is a wide range of value and detail in TEAs

“All models are wrong, but some are useful”
- George Box, British Statistician 1919-2013

Increasing detail

(
!

Process Assumed Simple Data driven Mechanistic Hybrid
model '\ performance conceptual surrogate mechanistic
(- -~ -~ - - --"-"-"=--=-"=-"=-"="-"="="=-"="=-"="="="="==-== \
Cost l Back of . . Simple with I : Detailed
Simple direct . ! Detailed L ..
model l\ envelope indirect factors site-specific
R Y
Prg:teass : Analogy Bench : Small pilot Large pilot Commercial
Cost
data Analyses for new technologies

Provide value by projecting costs from performance assumptions
Limited insight into best applications or best design/operations
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There is a wide range of value and detail in TEAs

“All models are wrong, but some are useful”
- George Box, British Statistician 1919-2013

Increasing detail

Process Assumed Simple Data driven 1 - Hybrid \|
Mechanistic i
model performance conceptual surrogate . mechanistic Il
- TS T T T T T T T T \ :
Cost Back of Simple direct : | S_lmple with Detailed ! _Detallec_i.
model envelope . indirect factors I' site-specific
S S-S -=-----=------=--=-=-==-==
I
Prg:teass : Analogy Bench Small pilot I Large pilot Commercial
|
Cost aiaTalal’ X NOT] necifi
data Detailed analyses for new technologies

Identify most promising applications, best design and operation for
different scenarios, pinpoint technical and financial bottlenecks
Supportin bench and pilot design, operation, and evaluation 10
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Conducting a TEA for new technologies can be challenging

Time and skill intensive steps: Two overall approaches:
1. Scope out relevant system to cover 1. Engineers in industry
technology benefits and costs « Cobble together available software tools
2. Implement or develop predictive models and in-house spreadsheets
linking decision variables to performance « Inherent limitations for modeling new
and cost technologies and incompatibilities due to
3. Obtain process and financial parameter interfacing between tools
values when data is typically limited
4. Determine design and operation without 2. Researchers in academia

Modveling Solutions

established heuristics » Build models from scratch

 TEAs have variable quality and can take
several months to two years to complete
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Start guiding R&D with a cost model and process data

Cost models are required, but predictive process models are optional
» Use an assumed performance process model based on your data or understanding
» Vary the financial and performance parameters to set research goals and priorities

Parametric Sensitivity Tornado Diagram
A L
Q B
= »
(O] o
e T e 2 CF
[ ( £
O . ©
< | Competing = D F
i
LI‘:: Technology e L
x__ Base
F [] Value

/o Parameter A Financial Metric 12
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Start guiding R&D with a cost model and process data

Cost models are required, but predictive process models are optional
» Use an assumed performance process model based on your data or understanding
» Vary the financial and performance parameters to set research goals and priorities

Cost model can combine engineering handbooks and online resources

« Use costing frameworks in chemical engineering handbooks (Towler & Sinnott, Seider et al.)
» Tables for generic equipment costs, factors for estimating indirect costs (engineering, siting, etc.)
» Update to today’s dollars with the chemical engineering plant cost index (CEPCI), blog description

» Curate online equipment cost quotes and establish a range and/or simple relationship

» Leverage the Activate Technomics course: https://www.activate.org/techonomics
» Educational videos, downloadable Excel models with costing framework and parameter ranges
» Developed by Chris Burk from Burk Techno-Economics with more resources at his site

Modveling Solutions
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https://www.sciencedirect.com/book/9780080966595/chemical-engineering-design
https://www.wiley.com/en-us/Product+and+Process+Design+Principles%3A+Synthesis%2C+Analysis+and+Evaluation%2C+4th+Edition-p-9781119282631
https://toweringskills.com/financial-analysis/cost-indices/
https://www.activate.org/techonomics
https://www.burktechnoeconomics.com/know-how

Start guiding R&D with a cost model and process data

Cost models are required, but predictive process models are optional
» Use an assumed performance process model based on your data or understanding
» Vary the financial and performance parameters to set research goals and priorities

Cost model can combine engineering handbooks and online resources

« Use costing frameworks in chemical engineering handbooks (Towler & Sinnott, Seider et al.)
« Tables for generic equipment costs, factors for estimating indirect costs (engineering, siting, etc.)
» Update to today’s dollars with the chemical engineering plant cost index (CEPCI), blog description
» Curate online equipment cost quotes and establish a range and/or simple relationship

» Leverage the Activate Technomics course: https://www.activate.org/techonomics
» Educational videos, downloadable Excel models with costing framework and parameter ranges

~-~~-~ i auaa ) asloe o olo o o S oo o oo L o O o oo o o - o o oo o
* Assumed process models can help set research goals and priorities

 Butthey lackinsight into whether targets are realistic or how to reach them

14
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https://www.sciencedirect.com/book/9780080966595/chemical-engineering-design
https://www.wiley.com/en-us/Product+and+Process+Design+Principles%3A+Synthesis%2C+Analysis+and+Evaluation%2C+4th+Edition-p-9781119282631
https://toweringskills.com/financial-analysis/cost-indices/
https://www.activate.org/techonomics
https://www.burktechnoeconomics.com/know-how

WaterTAP provides a platform for improving the quality and
decreasing the effort of TEAs

ONAWI $15M+ of funding

—~

Modular model library:

Cross-flow filtration Chemical treatment

o

L

Unified < v
Counterflow
membrane

— AN N = Adsorption
~

QL Electrochemical

T

Evaporative
I——b Biological processes

Software release:

» Publicly accessible on GitHub o

- Released every quarter GitHub
pip install watertap

Powerful

Dead-end [~ — R . — https://qgithub.com/watertap-org/watertap
v - -~ I hitps://watertap.readthedocs.io/en/latest/
Core attributes: A pgthon Core capabilities:
| © Open-source T « Simulation to evaluate new device integration
Flexible 4 [+ Multi-hierarchical - _ — - Optimization to explore complex systems
* Customizable < j;(x) =" - Sensitivity analyses to consider uncertainty
« Equation oriented )~ PYOMO « Parameter estimation to fit real-world data
« |IDAES compatible IDAES « Data-driven models for complex phenomena

~

Advanced Energy Systems

ModZIing Solutions

15


https://github.com/watertap-org/watertap
https://github.com/watertap-org/watertap
https://github.com/watertap-org/watertap
https://watertap.readthedocs.io/en/latest/

WaterTAP provides a platform for improving the quality and

decreasing the effort of TEAs

ONAWI| $15M+ of funding

—~

Modular model library:

Software release:

Cross-flow filtration ~ Chemical treatment ectrochemical . . .
X . = e » Publicly accessible on GitHub o
— \\\ s Adsorption —_— S G.tH b
. * Released every quarter I
Unlfled 3 ‘ Counterflow T i g 0 u
membrane valic:itlve Biological processes plp lnStall Watertap
Dead-end [~~~ — - | L. https://github.com/watertap-org/watertap
filtration — — -y
_ v https://watertap.readthedocs.io/en/latest/
Core attributes: A pgthon‘ Core capabilities:
(| * Open-source T Simulation to evaluate new device integration
Flexible < | + Multi-hierarchical ) = 0 Optimization to explore complex systems
: X) =
.| * Customizable q. Sensitivity analyses to consider uncertainty
- ) PYOMO

« Equation oriented

- |IDAES

Powerful

~

Mod:ﬁng Solutions

WaterTAP was developed to provide a centralized platform that makes

TEAs more transparent, reproducible, comparable, and extendable
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Mathematical optimization greatly expands TEAs

Optimization based modeling focuses on
parameters (model assumptions)

Simulation based modeling focuses on
decision variables

Simulation based sensitivity Simulation based optimization Mathematical optimization Parameter sensitivity

I [
| | — Fixed
, m m | — Optimized|
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Decision variable A Decision variable A Decision variable A Parameter U
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Mathematical optimization greatly expands TEAs

Optimization based modeling focuses on
parameters (model assumptions)

Simulation based modeling focuses on
decision variables

Simulation based sensitivity Simulation based optimization Mathematical optimization Dual parameter analysis
|
|
: m m
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Decision variable A Decision variable A Decision variable A Parameter A
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Detailed water chemistry is supported on WaterTAP

* Modeling complex water chemistry is challenging and data intensive
« Numerous reactions and interactions across aqueous, vapor, and solid species

« Dependent on concentrations of all species (even very small values)
« pH, temperature, pressure can all be significant

* Electrolyte theoretical models can be built on the platform (e.g., eNRTL,
MSE, Pitzer)

» Data availability limits the species than can be considered
« WaterTAP does not currently support a database for these models

« WaterTAP leverages external water chemistry software
Surrogate approach Direct approach

o ALAM Reaktoro
Water chemistry v o ek bt

Pyomo grey
systems, inc. simulations box model .
| PHREEQC O PyTorch @

——————————————————————————————————————————————————————————————————————————————————

leling el

Pyomo surrogate
model
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Evaluating the potential of a conceptual process

Objective: Model a novel
high recovery system using
conventional technologies

Description:

« 2 membrane and 1 evaporative process
« Constrained by mineral scaling

* Antiscalants, pH control, and softening for
interstage percipitation

Approach

« Mechanistic model for desalination processes
* ML model for water chemistry from PHREEQC

» Hypothetical model for antiscalant efficacy

Moclveling Solutions

e N
BWRO

A/S & HCI <40 bar

5

SWRO

Softening A/S & HCI <85 bar

.
o

hila® ~

> 2

v

Softening A/S & HCI MVC

\

v

v

. Max. TDS ~35-40 g/L ) Max. TDS ~100 g/L A Max. TDS ~300 g/L
100 =6 = pH 10
lon Conc. 1 < Calcite (CaCO,)
(mg/L) 1 == Gypsum (CaS0O,2H,0) o
Sio,
Na 739 > ] Cle,le(satli)te (SrSO,) [
Cl 870 € 104 = Brucite (Mg(OH),)
@ — ST=1
K 9 2
Ca 258 g
Mg 90 =
SO4 1011 g 15
HCO3 385
Sr 3
Si02 25 o
TDS 3397 50 60 70 80 90

Water recovery (%)
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Evaluating the potential of a conceptual process

e e 4 N
Objective: Model a novel BWRO SWRO
. ) Ss—= s—=

conventional technologies ——Eﬂ : = L»;I | ~ :
Surprising results: . Max. TDS ~35-40 g/LJ\ Max. TDS ~100 g/L A Max. TDS ~300 g/L y ’
. 3 —

Costs are below $1/m 1.2 T o
o : 0 Bl Antiscalant

Recoveries up to 98% recovery . 0100 Softening

BWRO
Other results: E SWRO
: : : : "~ 0.8 {H MvC

« Mineral scaling dictates extent of recovery in mg

each stage £

; O 6 n

« Higher salinity desalination technologies @)

contribute a small amount to the cost S 04-
« Softening cost becomes dominant 05 -

0.0
70 75 80 8 90 95 98

Moclveling Solutions

Water recovery (%)
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Evaluating the potential of a conceptual process

. . 4 a4 Y N

Objective: Model a novel BWRO SWRO
. ) s—= s—=

conventional technologies ——Eﬂ : = L’;I | : :
Surprising results: \_Max. TDS ~35-40 g/L A_ Max. TDS ~100 g/L A Max. TDS ~300 g/L P
. 3 _

Costs are below $1/m 1.2 19
o : ) B Antiscalant

Recoveries up to 98% recovery 1 0100 Softening

BWRO
Other results: E SWRO | f
) . . _ < 0840 mve High dls%osal

« Mineral scaling dictates extent of recovery in £ $5/m

each stage g 0.6 - Evaporation pond

: . o . ' ~ $0.65/m3

« Higher salinity desalination technologies O Deep well injection

contribute a small amount to the cost Q 04 $0.33/m
« Softening cost becomes dominant 02 -
« Disposal does not raise overall cost significantly,

typical disposal costs -> BWRO 0.0

high disposal costs -> BWRO and SWRO 0 7 80 8 90 95 o8

A Water recovery (%) 22
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Evaluating the potential of a conceptual process

Objective: Model a novel
high recovery system using A/S & HCI

BWRO
<40 bar

conventional technologies ——Eﬂ

Surprising results:

Y

Softening A/S & HCI <85 bar

.
o

__Max. TDS ~35-40 g/L

SWRO

Softening A/S & HCI MVC

\

v

i | [

Max. TDS ~100 g/L Y

(N

Max. TDS ~300 g/L

J

e Costs are below $1/m3
» Recoveries up to 98% recovery
Other results:

* Mineral scaling dictates extent of recovery in
each stage

« Higher salinity desalination technologies
contribute a small amount to the cost

« Softening cost becomes dominant

» Disp
typic

Modveling Solutions

1.2 1

] HCI
B Antiscalant
[] Softening
[0 BWRO r

= SIV\\/IEO High disposal
$5/m3

Evaporation pond

.. $%$0.65/m3
Deep well injection

$0.33/m?

* Antiscalants, acid addition, and softening can likely achieve high recoveries
iels] © Improvements in high concentration desaltechnologies has limited value

v



Exploring the potential of a novel membrane process

Low salt rejection reverse osmosis (LSRRO)

= 90
Feed water N Product water 16
—DQ—P Mixer p=— ‘\\ >
1 Recycled Permeate — 80 - 8
LSRRO | 2
Stage 2 Mixer [ \‘\ ; —
. Q £ 70 1 4 0O
f ' > Q
9 =
. . . e ® @ L B B ] O _ 2
Decision variables: t Recycled Permeate 0 r
« Membrane area LSRRO s 60 - §
» QOperating pressure Stage N . _QJ o -1 T
« Salt permeability/passage e < 50
: : High | - 0.5
Highly interconnected system ERD |—> salinity
Brine
40 — 0
30 60 90 120 150 180
Feed concentration (g/kg)
- Atia et al. Desalination. 2023, 551, 116407 24
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https://doi.org/10.1016/j.desal.2023.116407
https://doi.org/10.1016/j.desal.2023.116407
https://doi.org/10.1016/j.desal.2023.116407

Quantifying technoeconomic viability through comparison

LSRRO
920
80
2
=
S 70 -
>
o
[&]
o
= 60 -
2
@®
= 5.
40
30 60 90 120 150

Feed concentration (g/kg)
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T
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o
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Case: 100 g/kg and 50% water recovery

Lowest cost technology

90
[] RO
B LSRRO
80 O Mvc
=
= 70
>
o
&)
o
= 60 A
2
=
50 -
40 -

60 90 1éO 1é0
Feed concentration (g/kg)

180

Tucker et al. Water Research. 2024, 260, 121950

MVC

©
o
~

©
o
1

o o
(6]

~
o
1

Water recovery (%)
2
o oo
()]
(w/$) MOO1

an
o
1
T
>
()]

40 l l l —4
/ 30 60 90 120 150 180

Feed concentration (g/kg)
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Using sensitivity analysis to prioritize development

Case: 100 g/kg and 50% water recovery

10 10
== 5 stage LSRRO 48 itage == | SRRO
MVC S MVC
8 8 %
" : 6
S,
— —~ 2 e
™ ™
£ 6- £ 64 Slage
L &£ M&q
Sta
% % e>
4- 4-
@) O
| —
2 2
0 1 1 1 1 0 1 1 1
0 2 4 6 8 10 45 55 65 75 85
LSRRO water permeability (LMH/bar) LSRRO max pressure (bar)

= Atia et al. Desalination. 2023, 551, 116407
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https://doi.org/10.1016/j.desal.2023.116407
https://doi.org/10.1016/j.desal.2023.116407
https://doi.org/10.1016/j.desal.2023.116407

Identifying impactful and viable research targets

Case: 100 g/kg and 50% water recovery

75 LSRRO.base case
N 10
£
-
< 65 9
5
GCJ 55 8 O
5 =
o) P
E 45 7 §
GEJ w
O
o 35 6
Y
0p)]
1 5
25 T T
45 55 65 75 85
LSRRO max pressure (bar)
H%I’iZO n Atia et al. Desalination. 2023, 551, 116407 27
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https://doi.org/10.1016/j.desal.2023.116407
https://doi.org/10.1016/j.desal.2023.116407
https://doi.org/10.1016/j.desal.2023.116407

Identifying impactful and viable research targets

Case: 100 g/kg and 50% water recovery

75 LSRRO.base case

—_ 10
N

£

&

= 65 9

n

—

3 O
o 95 8 O
G =
o 7
E 45 7 §
GJ w
- _
O

T 35 6

5

1 5

25 .

95 65 75 85

45
LSRRO is a promising technology for feed salinities between 35-150 g/L TDS

R&D should focus on increasing the maximum allowable pressure
Mathematical optimization expands the analysis for the whole application space

Modveling Solutions
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Projecting the implications of bench-scale data

N

High pressure reverse osmosis (HPRO)

Feed *RO Produ»ct
1 Q \"/"""""i Polishin
/ \\RO 1 \\RO
N\ N\
| Q S \
S |

L
Repeated L—|ERD }—>
Waste

8 Prof. Eric Hoek

ERD |

Two known challenges:

« Membrane compaction at high pressures decreases
water permeability and increases salt permeability

« Equipment that operates at higher pressures are
more expensive

Moclveling Solutions



Projecting the implications of bench-scale data

High pressure reverse osmosis (HPRO)

Feed *RO Produ»ct
1 Q' \'/““““1 Polishin

| ,Q ~ ROJI RO

N N

I \,: N

L
Repeated L—|ERD }—>
Waste

ERD |

Two known challenges:

« Membrane compaction at high pressures decreases
water permeability and increases salt permeability

« Equipment that operates at higher pressures are
more expensive

Modeling Solutions Wu et al. Desalination. 2022, 537, 115875

Water permeability (LMH/bar)

Salt permeability (LMH)

4.0
=== (Compaction model
354~ +25% compaction factor
) > Wu (SWRO) et al.
3.0
2.5 A
2.0 A
1.5 1
1.0 A
0.5 4
00 T T 1
0 100 200 300 400
Pressure (bar)
2.00 - 7
=== (Compaction model /
1.75 4 =~ *25%compaction factor /
& Wu (HPRO) et al. s
1504 > Wu(SWRO)etal. e
1.25 4
1.00 A
0.75 A
0.50 A
0.25 A
0.00 T T T
0 100 200 300 400

Pressure (bar)
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Projecting the implications of bench-scale data

High pressure reverse osmosis (HPRO)

Feed *RO Produ»ct
Y Q' AN Polishin
I
1

)
| /Q RO RO
N N
1 \, \
L = |
Repeated 3| ERD }—>
Waste
ERD |«

Two known challenges:

« Membrane compaction at high pressures decreases
water permeability and increases salt permeability

« Equipment that operates at higher pressures are
more expensive

Mod:ﬁng Solutions

Pump cost ($/kW)

Module cost ($/m2)
3

100

~
()]
1

N
()]
n

=+ 125% pressure factor

10000

50 100 150 200 250 300 350 400
Pressure (bar)

8000 A

6000 A

4000 -

2000 -

0

=+ 125% pressure factor Vs

0

T T T T T T

50 100 150 200 250 300 350 400
Pressure (bar)
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Projecting the implications of bench-scale data

High pressure reverse osmosis (HPRO)

Feed RO Product 90 16
N >
1 Q \,/._________i Polishin
lﬁg’ >-> oL A 804 8
L= L = - S |°
Repeated | ERD __,W > 4 CI_)
aste o 70 -
ERD |« S @)
Q =
: 2 3
= 60 - 63\9
Two known challenges: < -1 o
« Membrane compaction at high pressures decreases = 50
water permeability and increases salt permeability r 0.5
« Equipment that operates at higher pressures are 40 A\ H

more expensive 30 60 90 120 150 180

Feed concentration (g/kg)
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Projecting the implications of bench-scale data

High pressure reverse osmosis (HPRO)

Feed RO Product 90 16
N >
1 Q \,/._________i Polishin
l,ag’ >-> oL A __80- 8
== = - X |°
Repeated | ERD _W> > 4 CI_)
aste o 70 -
ERD |« S @)
Q =
: 2 3
= 60 - 63\9
Two known challenges: < -1 o
« Membrane compaction at high pressures decreases = 50
water permeability and increases salt permeability r 0.5
« Equipment that operates at higher pressures are 40 A\ H

more expensive 30 60 90 120 150 180

Feed concentration (g/kg)

HPRO is promising despite membrane compaction and higher component costs
Modular models enable rapid assembly of different systems (LSRRO and HPRO) 33
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Assisting pilot design and operation

Distributed brackish water desalination in Kenya
(off grid and driven by solar power)

Anti-
scalants RO
Current Feed ~. | Product
system — — > [
» |
Waste
—p

Pilot seeks to address two issues:

* Mineral scaling even with significant antiscalant
dosing (at a high cost)

« High disposal volumes with only 50% water recovery

Softening Acid RO

Feed l_ =1 R Product
Pilot N ad N g

| \

e
lSIudge
Waste

Modveling Solufions

TEXAS ﬁé,,w Prof. Manish Kumar

The University of Texas at Austin

ENo scaling =~ [lBrucite scaling .
OCalcite scalingECalcite & Brucite scaling

1.0 1

O o o
EiN (o)) (o]
1 1 1

Extent of acidification (ApH)
o
o

o
1

I9.5 10 16.5 11 11.5
Softening effluent (pH) 34



Assisting pilot design and operation

Distributed brackish water desalination in Kenya
(off grid and driven by solar power)

Anti-
scalants RO
Current Feed ~. | Product
system — — > [
3
Waste
 —

Pilot seeks to address two issues:

* Mineral scaling even with significant antiscalant
dosing (at a high cost)

« High disposal volumes with only 50% water recovery

Softening Acid RO
Feed i ' [FT ] Product
. ad J|-> \ Benefits:
lSIudge « Reduce brine production by 67.5%
Waste « No use of antiscalants
Cons:

Herizon » Lime softening and waste sludge generation 35
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Assisting pilot design and operation

Distributed brackish water desalination in Kenya
(off grid and driven by solar power)

Anti-
scalants RO
Current Feed ~. | Product
system — — > [
» |
Waste
—p

Pilot seeks to address two issues:

* Mineral scaling even with significant antiscalant
dosing (at a high cost)

« High disposal volumes with only 50% water recovery

Softening Acid RO

Feed l_ =1 R Product
i g PN Benefits:

| \

——J

lSIudge

Pilot

» Reduce brine production by 67.5%

* Bench-scale testing is extended with detailed process-scale modeling
* Analysis identified a risk for pilot failure and suggested the fix 36
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Evaluating a potential commercial-scale retrofit

Large groundwater desalination plant

Analysis seeks to evaluate a potential retrofit: Prof. Mingheng Li

- Reduce disposal costs by increasing recovery Chino Basin Desalter

* Potentially add third stage RO with feed flow
reversal to mitigate mineral scaling

225

e Exp. Pump Work
= Sim. Pump Work

N
o
o

Pump Work (kW)
=

=i
(&)
o

R%: 0.99
MAPE: 0.38%
125

78.0 81.5 85.0 88.5 92.0
System Recovery (%)

= 37
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Evaluating a potential commercial-scale retrofit

Large groundwater desalination plant < CalPolyPomona

Analysis seeks to evaluate a potential retrofit: Prot. Mingheng Li

» Reduce disposal costs by increasing recovery

» Evaluate a third stage RO with feed flow reversal
to mitigate mineral scaling

Chino Basin Desalter

2.0 40
n 1.8
= 30
‘qi 16 99)
Normal operation Flushing of RO3 during flow switch, TJ 1.4 -20 3
(RO3 switch's flow direction) wastes part of feed g 15 ®
2" -0
=1 4 O
(1) (k) RO1 RO2 d @ [} )
Vhbbbd  bbbbed S Phbbhe hbbe § 0.8 -0 E
_Q —~~
0.6 ==
5 10 =
= 04
0.2 -20

10

Flush Volumes (Volumes)
What impact does membrane life and flush volumes have on viability?
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Evaluating a potential commercial-scale retrofit

Large groundwater desalination plant

Analysis seeks to evaluate a potential retrofit: Prot. Mingheng Li

« Reduce disposal costs by increasing recovery

» Evaluate a third stage RO with feed flow reversal
to mitigate mineral scaling

Chino Basin Desalter

2.0 40
= 1.8
o 30
3 16 %
Normal operation Flushing of RO3 during flow switch, ],’ 1.4 -20 3
(RO3 switch's flow direction) wastes part of feed g 15 -
o -0
(1) (k) RO1 RO2 1 @ o L 8
© Y bbbt s § 0.8 -0 =
B o) —
0.6 2
= 10 <
o S 04
IXNERN @ 0.2 -20
LLUEWINE o Significant insight with varying two assumed performance parameters
A Suggests further investigation into membrane lifetime (not necessarily flushing) 39
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WaterTAP has a broad water treatment library

Membrane:
 Reverse osmosis Sy G e ¥ s
« Osmotically assisted reverse osmosis A ' Adsorption — —
« Nanofiltration i " e
« Membrane distillation f membrane R —
Evaporative: Deac-endf==""" 1 - - P
* Mechanical vapor compression !
« Multi-effect distillation _

Ad/absorption:

« Crystallizer
* lon exchange

 Granular activated carbon
 Solvent extraction

Electrochemical:
« Electrodialysis
» Electrolyzer

« Electrocoagulation Biological:

« Activated sludge

Chemical: » Anaerobic digestor

« Stoichiometric and equilibrium reactors . _
Auxiliary equipment:
* pumps, heat exchangers, mixers, splitters ,,

Modveling Solutions



Process scale modeling provides value in TEAs

Use process and cost models that:

* Link key design and operating variables to the
performance and cost

« Represent the system, not just the technology

« Use mathematical optimization to handle the
design and operating variables

» Consider uncertainty through deterministic

and stochastic sensitivity analyses ©

* Incorporate real world data through: ©

®

* Parameter estimation with mechanistic %

models Iz

* Hybrid models with data-driven surrogate A
models

Modveling Solutions

Feed g \\

Product

o T ero

Polishing
RO

-
Waste

Mathematical optimization

Decision variable A

LCOW ($/m?)

Dual parameter analysis

Parameter B
LCOW ($/m3)

Parameter A
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TEA provides quantitative decision support for R&D

Predictive process modeling with optimization transforms TEAs:
 Evaluate full application space and identify most promising ones

Determine best design and operation for a model and specified parameters

Focus analysis on modeling assumptions and parameters, not decision variables
Pinpoint technical and financial bottlenecks and determine priority for development

If model predictions are shown to be inaccurate, they can be updated with implications
assessed quickly

Process systems engineering and TEA can support bench and piloting efforts:
* Plan — support system design and experimental campaign to achieve objectives

» Operate — fault detection and attribution, suggest modifications

« Evaluate — project the implications of the data for commercial scale deployment

" 42
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